Logo 
Search:

C Programming Articles

Submit Article
Home » Articles » C Programming » Numerical MethodsRSS Feeds

GENERAL NEWTON RAPHSON METHOD

Posted By: William Bouchard     Category: C Programming     Views: 43141

Write a program of GENERAL NEWTON RAPHSON METHOD.

Code for GENERAL NEWTON RAPHSON METHOD in C Programming

#include<conio.h>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>

int user_power,i=0,cnt=0,flag=0;
int coef[10]={0};
float x1=0,x2=0,t=0;
float fx1=0,fdx1=0;

void main()
{

    clrscr();

    printf("\n\n\t\t\t PROGRAM FOR NEWTON RAPHSON GENERAL");

    printf("\n\n\n\tENTER THE TOTAL NO. OF POWER:::: ");
    scanf("%d",&user_power);

    for(i=0;i<=user_power;i++)
    {
        printf("\n\t x^%d::",i);
        scanf("%d",&coef[i]);
    }

    printf("\n");

    printf("\n\t THE POLYNOMIAL IS ::: ");
    for(i=user_power;i>=0;i--)//printing coeff.
    {
        printf(" %dx^%d",coef[i],i);
    }

    printf("\n\tINTIAL X1---->");
    scanf("%f",&x1);

    printf("\n ******************************************************");
    printf("\n ITERATION    X1    FX1    F'X1  ");
    printf("\n **********************************************************");

    do
    {
            cnt++;
            fx1=fdx1=0;
            for(i=user_power;i>=1;i--)
            {
                fx1+=coef[i] * (pow(x1,i)) ;
            }
            fx1+=coef[0];
            for(i=user_power;i>=0;i--)
            {
                fdx1+=coef[i]* (i*pow(x1,(i-1)));
            }
            t=x2;
            x2=(x1-(fx1/fdx1));

            x1=x2;

            printf("\n %d         %.3f  %.3f  %.3f ",cnt,x2,fx1,fdx1);

    }while((fabs(t - x1))>=0.0001);
    printf("\n\t THE ROOT OF EQUATION IS %f",x2);
    getch();
}

/*******************************OUTPUT***********************************/
PROGRAM FOR NEWTON RAPHSON GENERAL ENTER THE TOTAL NO. OF POWER:::: 3 x^0::-3 x^1::-1 x^2::0 x^3::1 THE POLYNOMIAL IS ::: 1x^3 0x^2 -1x^1 -3x^0 INTIAL X1---->3 ************************************** ITERATION X1 FX1 F'X1 ************************************** 1 2.192 21.000 26.000 2 1.794 5.344 13.419 3 1.681 0.980 8.656 4 1.672 0.068 7.475 5 1.672 0.000 7.384 ************************************** THE ROOT OF EQUATION IS 1.671700
  
Share: 


Didn't find what you were looking for? Find more on GENERAL NEWTON RAPHSON METHOD Or get search suggestion and latest updates.

William Bouchard
William Bouchard author of GENERAL NEWTON RAPHSON METHOD is from Montreal, Canada.
 
View All Articles

 
Please enter your Comment

  • Comment should be atleast 30 Characters.
  • Please put code inside [Code] your code [/Code].

 
Kanjana Singpong from United States Comment on: Nov 25
how to solve minimum of newton method for this equation ???

View All Comments