Logo 
Search:

C Programming Articles

Submit Article
Home » Articles » C Programming » Numerical MethodsRSS Feeds

NEWTON'S FORWARD DIFFERENCE METHOD

Posted By: Adelfried Fischer     Category: C Programming     Views: 19320

Write a program of NEWTON'S FORWARD DIFFERENCE METHOD.

Code for NEWTON'S FORWARD DIFFERENCE METHOD in C Programming

#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()
{
  float x[10],y[10][10],sum,p,u,temp;
  int i,n,j,k=0,f,m;
  float fact(int);
  clrscr();
  printf("\nhow many record you will be enter: ");
  scanf("%d",&n);
  for(i=0; i<n; i++)
  {
   printf("\n\nenter the value of x%d: ",i);
   scanf("%f",&x[i]);
   printf("\n\nenter the value of f(x%d): ",i);
   scanf("%f",&y[k][i]);
  }

  printf("\n\nEnter X for finding f(x): ");
  scanf("%f",&p);

  for(i=1;i<n;i++)
  {
    for(j=0;j<n-i;j++)
    {
     y[i][j]=y[i-1][j+1]-y[i-1][j];
    }
  }
  printf("\n_____________________________________________________\n");
  printf("\n  x(i)\t   y(i)\t    y1(i)    y2(i)    y3(i)    y4(i)");
  printf("\n_____________________________________________________\n");
  for(i=0;i<n;i++)
  {
    printf("\n %.3f",x[i]);
    for(j=0;j<n-i;j++)
    {
     printf("   ");
     printf(" %.3f",y[j][i]);
    }
   printf("\n");
  }

  i=0;
  do
  {
   if(x[i]<p && p<x[i+1])
    k=1;
   else
    i++;
  }while(k != 1);
  f=i;
  u=(p-x[f])/(x[f+1]-x[f]);
  printf("\n\n u = %.3f ",u);

  n=n-i+1;
  sum=0;
  for(i=0;i<n-1;i++)
  {
   temp=1;
   for(j=0;j<i;j++)
   {
    temp = temp * (u - j);
   }
    m=fact(i);
    sum = sum + temp*(y[i][f]/m);
  }
  printf("\n\n f(%.2f) = %f ",p,sum);
  getch();
}

float fact(int a)
{
  float fac = 1;

  if (a == 0)
   return (1);
  else
   fac = a * fact(a-1);

  return(fac);
}

/*
______________________________________

OUT PUT
______________________________________


how many record you will be enter: 5


enter the value of x0: 2


enter the value of f(x0): 9


enter the value of x1: 2.25


enter the value of f(x1): 10.06


enter the value of x2: 2.5


enter the value of f(x2): 11.25


enter the value of x3: 2.75


enter the value of f(x3): 12.56


enter the value of x4: 3


enter the value of f(x4): 14


Enter X for finding f(x): 2.35

_____________________________________________________

x(i) y(i) y1(i) y2(i) y3(i) y4(i)
_____________________________________________________

2.000 9.000 1.060 0.130 -0.010 0.020

2.250 10.060 1.190 0.120 0.010

2.500 11.250 1.310 0.130

2.750 12.560 1.440

3.000 14.000


u = 0.400

f(2.35) = 10.522240

*/
  
Share: 

 
 

Didn't find what you were looking for? Find more on NEWTON'S FORWARD DIFFERENCE METHOD Or get search suggestion and latest updates.

Adelfried Fischer
Adelfried Fischer author of NEWTON'S FORWARD DIFFERENCE METHOD is from Frankfurt, Germany.
 
View All Articles

Related Articles and Code:


 
Please enter your Comment

  • Comment should be atleast 30 Characters.
  • Please put code inside [Code] your code [/Code].

 
Abhay Singh from India Comment on: Mar 08
and what is the mean of %.3f

Abhay Singh from India Comment on: Mar 08
please tell me why you declear the k=0,f,m integer variables
temp as a float variables

View All Comments