Logo 
Search:

C Programming Articles

Submit Article
Home » Articles » C Programming » Numerical MethodsRSS Feeds

NEWTON'S BACKWARD DIFFERENCE METHOD

Posted By: Logan Bouchard     Category: C Programming     Views: 11786

Write a program of NEWTON'S BACKWARD DIFFERENCE METHOD.

Code for NEWTON'S BACKWARD DIFFERENCE METHOD in C Programming

#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()
{
  float x[10],y[10][10],sum,p,u,temp;
  int i,n,j,k=0,f,m;
  float fact(int);
  clrscr();
  printf("\nhow many record you will be enter: ");
  scanf("%d",&n);
  for(i=0; i<n; i++)
  {
   printf("\n\nenter the value of x%d: ",i);
   scanf("%f",&x[i]);
   printf("\n\nenter the value of f(x%d): ",i);
   scanf("%f",&y[k][i]);
  }
  printf("\n\nEnter X for finding f(x): ");
  scanf("%f",&p);

  for(i=1;i<n;i++)
  {
    for(j=i;j<n;j++)
    {
     y[i][j]=y[i-1][j]-y[i-1][j-1];
    }
  }
  printf("\n_____________________________________________________\n");
  printf("\n  x(i)\t   y(i)\t    y1(i)    y2(i)    y3(i)    y4(i)");
  printf("\n_____________________________________________________\n");
  for(i=0;i<n;i++)
  {
    printf("\n %.3f",x[i]);
    for(j=0;j<=i;j++)
    {
     printf("   ");
     printf(" %.3f",y[j][i]);
    }
   printf("\n");
  }

  i=0;
  do
  {
   if(x[i]<p && p<x[i+1])
    k=1;
   else
    i++;
  }while(k != 1);
  f=i+1;
  u=(p-x[f])/(x[f]-x[f-1]);
  printf("\n\n u = %.3f ",u);

  n=n-i+1;
  sum=0;
  for(i=0;i<n;i++)
  {
   temp=1;
   for(j=0;j<i;j++)
   {
    temp = temp * (u + j);
   }
    m=fact(i);
    sum = sum + temp*(y[i][f]/m);
  }
  printf("\n\n f(%.2f) = %f ",p,sum);
  getch();
}

float fact(int a)
{
  float fac = 1;

  if (a == 0)
   return (1);
  else
   fac = a * fact(a-1);

  return(fac);
}

/*
______________________________________

OUT PUT
______________________________________


how many record you will be enter: 5


enter the value of x0: 2.5


enter the value of f(x0): 9.75


enter the value of x1: 3


enter the value of f(x1): 12.45


enter the value of x2: 3.5


enter the value of f(x2): 15.70


enter the value of x3: 4


enter the value of f(x3): 19.52


enter the value of x4: 4.5


enter the value of f(x4): 23.75


Enter X for finding f(x): 4.25

_____________________________________________________

x(i) y(i) y1(i) y2(i) y3(i) y4(i)
_____________________________________________________

2.500 9.750

3.000 12.450 2.700

3.500 15.700 3.250 0.550

4.000 19.520 3.820 0.570 0.020

4.500 23.750 4.230 0.410 -0.160 -0.180


u = -0.500

f(4.25) = 21.583750

*/
  
Share: 


Didn't find what you were looking for? Find more on NEWTON'S BACKWARD DIFFERENCE METHOD Or get search suggestion and latest updates.

Logan Bouchard
Logan Bouchard author of NEWTON'S BACKWARD DIFFERENCE METHOD is from Montreal, Canada.
 
View All Articles

Related Articles and Code:


 
Please enter your Comment

  • Comment should be atleast 30 Characters.
  • Please put code inside [Code] your code [/Code].

 
No Comment Found, Be the First to post comment!